If it's not what You are looking for type in the equation solver your own equation and let us solve it.
41x=4x^2-784
We move all terms to the left:
41x-(4x^2-784)=0
We get rid of parentheses
-4x^2+41x+784=0
a = -4; b = 41; c = +784;
Δ = b2-4ac
Δ = 412-4·(-4)·784
Δ = 14225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14225}=\sqrt{25*569}=\sqrt{25}*\sqrt{569}=5\sqrt{569}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(41)-5\sqrt{569}}{2*-4}=\frac{-41-5\sqrt{569}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(41)+5\sqrt{569}}{2*-4}=\frac{-41+5\sqrt{569}}{-8} $
| 8y-24=12 | | 19.2+3.1x=6.8x+30.3 | | 2x2-4x=2 | | 14c-2-16=12c+2 | | (x-5)+2=5x-7 | | 5x-4x=19 | | -15n+16=-14n-16 | | -2y-12y=5y+2 | | 42x-3=43x | | 9y-9=8-4y | | -17-(-7)=x/7 | | (2x-5)^2=25 | | (-2)(-27+30x)=6(13-12x) | | 8t+3t+14t−17=−17 | | x^2/3-25x/12-7/4=0 | | T/2x^2=x | | 35-22x=55x+112 | | c=3.1+1.8 | | 0.7x+0.3=3.8 | | 12c-3-1=8c+8 | | 5x-3=(x=7)+3x | | 12c-3=8c+8 | | 3t-3=4t+16 | | -6t-24=0 | | 31-11=4(x-3) | | .036p+.26=3.86 | | 26+2y-1=12y-10-5y | | X+19+2x=-19-2x-22 | | 2.6=6.3+y | | 15×+5y=114 | | 10-3*(x+4)=15 | | 7x-3(x+2)=14 |